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Abstract Three primary differences between BNT- and

PZT-based ceramics were analyzed from the composition

and the active component of the materials. Based on the anal-

ysis the authors’ group developed the new idea of the design

of the multiple complex in the A-site ions of BNT com-

pounds. (Bi0.5Na0.5)2+, Bi3+ and Na+ in the ABO3 structure

are defined as A-site, A1-site and A2-site ions, respectively,

and A, A1 and A2-site ions can be simultaneously or singly

substituted partially by alkaline-earth metal ions, metal ions

with +3 valence and metal ions with +1 valence, respec-

tively. Under this consideration, Several new systems of

Bi0.5Na0.5TiO3 (abbreviated as BNT)-based lead-free piezo-

electric ceramics were proposed. These ceramics can be

prepared by conventional ceramic techniques and have ex-

cellent piezoelectric performance. Among these materials,

Bi0.5(Na1−x−yKx Liy)0.5TiO3 possesses higher piezoelectric

constant (d33 = 230 pC/N), higher electromechanical cou-

ple factor (kp = 0.40), larger remanent polarization (Pr =
38.9 μC/cm2) and a better P-E hysteresis loop until about

200◦C.
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1 Introduction

Lead-based piezoelectric ceramics, represented by PbTiO3-

PbZrO3 (abbreviated as PZT) and PZT-based multi-system,

have wide applications in electronic and microelectronic de-

vices due to their excellent piezoelectric properties. However,

the toxicity of lead oxide and its high vapor pressure dur-

ing sintering processing cause a serious ecological prob-

lem. Therefore, to reduce and eliminate lead pollution,

more and more attentions have been paid to lead-free

piezoelectric ceramics. It is necessary to develop lead-free

piezoelectric ceramics with excellent piezoelectric proper-

ties such as those of lead-based piezoelectric ceramics. And

new piezoelectric ceramics should be “lead-free at last”

[1].

Bi0.5Na0.5TiO3 (abbreviated as BNT) is considered to be

a good candidate of lead-free piezoelectric ceramics with

a relatively large remanent polarization (Pr = 38 μC/cm2).

However, pure BNT piezoelectric ceramics are difficult to

pole because of its relatively large coercive field (Ec =
73 kV/cm) and therefore provide too low piezoelectric

properties. To improve piezoelectric properties of BNT ce-

ramics, some BNT-based solid solutions have been devel-

oped and extensively studied, such as BNT-BaTiO3 [2],

BNT-Bi0.5K0.5TiO3 [3], BNT-BiFeO3 [4], BNT-NaNbO3 [5],

BNT-Ba(Cu1/2W1/2)O3 [6], BNT-Bi0.5K0.5TiO3-BaTiO3 [7],

BNT-1/2(Bi2O3 · Sc2O3) [8] and so on. However, piezo-

electric properties of these solid solutions are not high

enough. So, research and development of new BNT-based

multi-component systems may be an possible approach

to improve efficiently the piezoelectric properties of BNT

ceramics.
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2 Consideration of the design of BNT-based lead-free
piezoelectric ceramics

As well known, compared with PZT ceramics, pure BNT ce-

ramics and BNT-based solid solutions give so much lower

piezoelectric properties. There may be three primary differ-

ences between BNT- and PZT-based ceramics. Firstly, BNT

is a ferroelectric compound with complex ions (Bi0.5Na0.5)2+

of Bi3+ and Na+ in its A-site. Completely different from

BNT, PZT is a solid solution and is composed of PbTiO3

and PbZrO3 with complex ions of Ti4+ and Zr4+ in its

B-site. Secondly, most BNT-based ceramics are the solid so-

lutions which are made up of ferroelectric BNT and other

ferroelectrics or non-ferroelectrics such as Bi0.5K0.5TiO3

[3], BaTiO3 [2], Ba(Cu1/2W1/2)O3 [6], BiFeO3 [4] and so

on. In contrast, PZT is the solid solution which is com-

posed of ferroelectric PbTiO3 and antiferroelectric PbZrO3.

That is, there should be a different principle of forming

solid solutions between BNT-based and PZT-based ceram-

ics. Finally, Bi0.5Na0.5TiO3 is A-site piezoelectric active,

and BNT-based ceramics with relatively good piezoelec-

tric properties can be obtained through partially substitution

of A-site (Bi0.5Na0.5)2+ ions by Ba2+, (Bi0.5K0.5)2+, Ba2+-

(Bi0.5K0.5)2+ and so on. Modification of BNT in B-site cannot

effectively improve the piezoelectric properties. Contrasting

with BNT, PbTiO3 is B-site piezoelectric active. It is well

known that PbTiO3-based ceramics with excellent piezoelec-

tric properties are the solid solutions that the B-site ions Ti4+

of PbTiO3 are partially substituted by Zr4+, (Mg1/3Nb2/3)4+

and so on. In a word, the modification of BNT and PbTiO3

may obey different rules.

So, in order to improve the electrical properties of

BNT-based ceramics for practical applications, the research

approaches should be different from those used in the inves-

tigation of PZT ceramics. The authors’ group did intensive

investigation on BNT ferroelectrics in recent years and de-

veloped the new idea of the design of the multiple complex

in the A-site ions of BNT compounds.

According to this idea, (Bi0.5Na0.5)2+, Bi3+ and Na+

in the ABO3 structure are defined as A-site, A1-site and

A2-site ions, respectively. And A, A1 and A2-site ions

can be simultaneously or singly substituted partially by

alkaline-earth metal ions (Ba2+, Sr+2, Ca+2), metal ions

with +3 valence (La3+, Y3+ and so on) and metal ions

with +1 valence (K+, Li+ and so on), respectively. Under

this consideration, some new members of BNT group, such

as Bi0.5(Na1−x−yKx Liy)0.5TiO3,[Bi1−z(Na1−x−y−zKx Liy)]0.5

BazTiO3,[Bi1−y(Na1−x Lix )]0.5BayTiO3,[Bi1−y−z(Na1−x−y−z

Lix )]0.5BaySrzTiO3,[Bi1−y−z(Na1−x−y−zKx )]0.5BaySrzTiO3

and so on, were proposed and patented, and the piezoelectric

and ferroelectric properties were investigated. The results of

the researches are briefly outlined as follows.

3 New systems of BNT-based lead-free piezoelectric
ceramics based on the design of the multiple complex in
the A-site of ABO3 compounds

3.1 Experimental

New BNT-based lead-free piezoelectric ceramics were

prepared by conventional ceramic fabrication technique.

Industrial-grade metal oxides or carbonate powders of Bi2O3,

Na2CO3, K2CO3, Li2CO3, Ag2O, BaCO3 and TiO2 were used

as starting raw materials. All the raw materials mixed by ball-

milling were calcined at 800–900◦C for 2–4 h. After calcina-

tion, the ball-milled powders were granulated by adding PVA

as a binder and pressed into discs and then sintered at 1100–

1200◦C for 2–3 h in atmosphere. Silver paste was coated to

form electrodes on both sides of sintered ceramic specimens

and fired at 810◦C. The specimens were poled in silicone oil

bath with a dc field of 3–4 kV/mm at 80◦C for 20 min.

The crystalline phase of the samples was examined by

X-ray diffraction (XRD) technique (DX-1000X, China). The

microstructure of the sintered samples was observed using

scanning electron microscope (JSM-5900LV). Electrome-

chanical coupling factor k was determined by the resonance-

antiresonance method on the basis of IEEE standards by us-

ing an impedance analyzer (HP4194A). The piezoelectric

constant d33 was measured using a piezo-d33 meter (ZJ-3A).

The P-E hysteresis loops were observed using Radiant Pre-

cision Workstation.

3.2 Piezoelectric properties of Bi0.5(Na1−x−yKx Liy)0.5TiO3

lead-free piezoelectric ceramics

The results of the X-ray diffractions of all the samples inves-

tigated show that the new ceramics possess a single-phase

perovskite structure. It is believed that K+and Li+ ions sub-

stitute partially Na+ ion, Ba2+ and Sr2+ substitute partially

(Bi0.5Na0.5)2+ ions, and La3+ and some related ions substitute

partially Bi3+ ion, and the substitute ions diffuse into the BNT

lattices to form solid solutions. All new BNT-based ceramics

are well sintered at 1100–1200◦C in air. Figure 1 gives a typi-

cal XRD pattern of Bi0.5(Na0.70K0.20Li0.10)0.5TiO3 ceramics.

Figure 2 shows the microstructures of Bi0.5(Na1−x−y

Kx Liy)0.5TiO3 ceramics. Almost no holes are found on the

surface of Bi0.5(Na1−x−yKx Liy)0.5TiO3 ceramics. The bulk

densities of Bi0.5(Na1−x−yKx Liy)0.5TiO3 ceramics are higher

than 97% of the theoretical density.

Figure 3 shows the piezoelectric properties as a function of

x for Bi0.5(Na0.90−x Kx Li0.10)0.5TiO3 ceramics. From Fig. 3,

it can be found that new Bi0.5(Na0.90−x Kx Li0.10)0.5TiO3 lead-

free piezoelectric ceramics based on the design of the mul-

tiple complex in the A-site of ABO3 compounds provide

excellent piezoelectric properties. The piezoelectric constant
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Fig. 1 The XRD pattern of Bi0.5(Na0.70K0.20Li0.10)0.5TiO3 ceramics

reaches the maximum of 230 pC/N at x = 0.20. And the

maximum of the electromechanical factor kp appears at

x = 0.175 and reaches 41%. As well known, pure BNT ce-

ramics provide the piezoelectric constant d33 of 58 pC/N [9],

and some classic BNT-based ceramics, such as BNT-BKT

[3], BNT-BT-BKT [7], BNT-NaNbO3 [5], give piezoelec-

tric properties of d33 = 96, 191, 88 pC/N, and kp = 0.314,

0.33, 0.179, respectively. Obviously, compared with these

BNT-based ceramics, the new ceramics developed in present

work show much better piezoelectric properties.

Figure 4 shows the P-E hysteresis loops of Bi0.5(Na0.775-

K0.15Li0.075)0.5TiO3 ceramics at different temperature. It can

be seen from Fig. 4 that at 20◦C the hysteresis loop shows

a typical ferroelectric characteristic, and with temperature

increasing, the loops begin to become narrower but still keep

the very typical ferroelectric feature and large remanent

polarization up to 190◦C. When the temperature reaches

210◦C, the hysteresis loop of the ceramics is deformed and a

double-like P-E hysteresis loop appears. It can be concluded

from Fig. 4 that the depolarization temperature Td of the ma-

terial investigated is about 200◦C. Td is an important factor

for BNT-based ceramics from the device applications points

of view. Generally, for some classical BNT-based ceramics,

the obvious enhancement of piezoelectric properties is

accompanied simultaneously by the significant reduction of

Td . However, BNKLT-0.15/0.075 ceramics provide simul-

taneously good piezoelectric properties (d33 = 146 pC/N,

kp = 0.36), strong ferroelectricity (Pr = 38.9 μC/cm2,

Ec = 3.7 kV/mm), and higher Td (about 200◦C).

3.3 Piezoelectric properties of [Bi1−y(Na1−x−yLix )]0.5Bay-

TiO3 lead-free piezoelectric ceramics

Figure 5 shows the dependence of piezoelectric properties

of [Bi1−y(Na0.925−yLi0.075)]0.5BayTiO3 on the amount y of

(a) (b) 

Fig. 2 SEM images of

BNKLT-x/y ceramics (a)

Bi0.5(Na0.775K0.15Li0.075)0.5TiO3

ceramics sintered at 1100◦C for

2 h, (b) Bi0.5(Na1−x−yK0.20

Li0.10)0.5TiO3 sintered at

1125◦C for 2 h
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Fig. 3 Piezoelectric constant

d33 (a) and electromechanical

coupling factor (b) as a function

of x for Bi0.5(Na0.90−x Kx

Li0.10)0.5TiO3 ceramics
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Fig. 5 Piezoelectric properties of [Bi1−y(Na0.925−yLi0.075)]0.5BayTiO3

ceramics as a function of the amount of Ba

Ba. From Fig. 5, it can be seen that the piezoelectric con-

stant d33 and planar electromechanical coupling factor kP of

the [Bi1−y(Na0.925−yLi0.075)]0.5BayTiO3 ceramics sintered at

1100◦C for 2 h reach the maximum value of 208 pC/N and

37.0% at y = 0.06.

3.4 Piezoelectric properties of [Bi1−z(Na1−x−y−zKx Liy)]0.5

BazTiO3 lead-free piezoelectric ceramics

Figure 6 shows the piezoelectric properties of [Bi1−z

(Na0.75−zK0.15Li0.10)]0.5BazTiO3 as a function of z. From

Fig. 6, the maximum values of d33 (198 pC/N) of the
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Fig. 6 Piezoelectric constant d33 and electromechanical coupling factor

kp of [Bi1−z(Na0.75−zK0.15Li0.10)]0.5BazTiO3 as a function of z

[Bi1−z(Na0.75−zK0.15Li0.10)]0.5BazTiO3 occur at z = 0.02.

The planar electromechanical coupling factor kp decreases

sharply with the z increasing.

3.5 Summarization of the lead-free piezoelectric ceramics

developed in author’s group

Table 1 gives the summarization of the piezoelectric and

ferroelectric properties of some new BNT-based ceramics

developed in present work. From Table 1, it can be found

that these new systems of BNT-based lead-free piezoelec-

tric ceramics based on the design of the multiple complex in

the A-site of ABO3 compounds provide excellent piezoelec-

tric and ferroelectric properties. These new ceramics exhibit

good performance and strong ferroelectricity: d33 is larger

than 200 PC/N, kp = 0.34–0.41, Pr = 33.8–40.4 μC/cm2,

and Ec = 2.47–5.16 kV/mm.

4 Possible applications of new BNT-based lead-free
piezoelectric ceramics

The Bi0.5(Na1−x−yKx Liy)0.5TiO3 lead free piezoelectric

ceramics have been used for making ceramics mid-

dle frequency filters. The measurement shows that the

performance of Bi0.5(Na1−x−yKx Liy)0.5TiO3 filer is com-

parable to that of Pb-based middle frequency filer. In ad-

dition, Bi0.5(Na1−x−yKx Liy)0.5TiO3 and [Bi1−z(Na1−x−y−z

Kx Liy)]0.5BazTiO3 lead-free piezoelectric ceramic were used

Table 1 The best piezoelectric

and ferroelectric properties of

the new BNT-based ceramics

developed in present work

New BNT-based systems d33 kp Pr Ec

Bi0.5(Na1−x−yKx Liy)0.5TiO3 230.8 0.41 40.4 2.5–4.0

[Bi1−z(Na1−y−zLiy)]0.5BazTiO3 207.8 0.368 38.5 3.29

[Bi1−z(Na1−x−y−zKx Liy)]0.5BazTiO3 202.7 0.365 38.5 2.8–5.16

[Bi1−z−u(Na1−y−z−uLiy)]0.5BazSruTiO3 202.0 0.338 40.4 2.47–4.98

Bi0.5(Na1−x−yKx LiyAgz)0.5TiO3 215.5 39.3 – –d33: pC/N, Pr : μC/cm2, Ec:

kV/mm.
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for making buzzers by ordinary techniques as used for PZT-

based piezoelectric buzzers as well. The properties of the

buzzers are well comparable with PZT-based piezoelectric

buzzers, and the buzzers can be provided commercially. It

can be believed that these ceramics can be used in other

piezoelectric devices.

5 Conclusion

Three primary differences between BNT- and PZT-based ce-

ramics were analyzed from the composition and the active

component. Based on the analysis the authors’ group de-

veloped the new idea of the design of the multiple com-

plex in the A-site ions of BNT compounds. (Bi0.5Na0.5)2+,

Bi3+ and Na+ in the ABO3 structure are defined as A-site,

A1-site and A2-site ions, respectively, and A, A1 and A2-site

ions can be simultaneously or singly substituted partially

by alkaline-earth metal ions, metal ions with +3 valence

and metal ions with +1 valence, respectively. Several new

systems of BNT-based lead-free piezoelectric ceramics were

proposed based on the design of the multiple complex in the

A-site of BNT materials and prepared by the conventional

ceramic technique. All new BNT-based ceramics possess a

single phase of perovskite structure and are well sintered at

1100–1200◦C in air. The ceramics show good piezoelectric

performance: d33 = 230 PC/N, kp = 0.40. Practical devices

have been made using BNT-based lead-free piezoelectric ce-

ramics developed in present work.
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